login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173307
a(n) = 13*n*(n+1).
2
0, 26, 78, 156, 260, 390, 546, 728, 936, 1170, 1430, 1716, 2028, 2366, 2730, 3120, 3536, 3978, 4446, 4940, 5460, 6006, 6578, 7176, 7800, 8450, 9126, 9828, 10556, 11310, 12090, 12896, 13728, 14586, 15470, 16380, 17316, 18278, 19266, 20280, 21320, 22386, 23478, 24596
OFFSET
0,2
FORMULA
a(n) = 26*A000217(n).
From Vincenzo Librandi, Sep 28 2013: (Start)
G.f.: 26*x/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/13.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/13.
Product_{n>=1} (1 - 1/a(n)) = -(13/Pi)*cos(sqrt(17/13)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (13/Pi)*cos(3*Pi/(2*sqrt(13))). (End)
From Elmo R. Oliveira, Dec 14 2024: (Start)
E.g.f.: 13*exp(x)*x*(2 + x).
a(n) = 13*A002378(n) = 2*A152741(n). (End)
MATHEMATICA
Table[13 n (n + 1), {n, 0, 50}] (* or *) CoefficientList[Series[26 x/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 28 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 26, 78}, 50] (* Harvey P. Dale, Apr 08 2014 *)
PROG
(Magma) [13*n*(n+1): n in [0..40]]; // Vincenzo Librandi, Sep 28 2013
(Magma) I:=[0, 26, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 28 2013
(PARI) a(n)=13*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 16 2010
EXTENSIONS
Incorrect formulas and examples deleted by R. J. Mathar, Jan 04 2011
STATUS
approved