login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173275 a(n) = 169*n^2 + n. 2
170, 678, 1524, 2708, 4230, 6090, 8288, 10824, 13698, 16910, 20460, 24348, 28574, 33138, 38040, 43280, 48858, 54774, 61028, 67620, 74550, 81818, 89424, 97368, 105650, 114270, 123228, 132524, 142158, 152130, 162440, 173088, 184074, 195398, 207060, 219060, 231398, 244074, 257088, 270440, 284130, 298158, 312524 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (338*n + 1)^2 - (169*n^2 + n)*26^2 = 1 can be written as A158000(n)^2 - a(n)*26^2 = 1. - Vincenzo Librandi, Feb 10 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(13^2*t+1)).

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(-170 - 168*x)/(x-1)^3. - Vincenzo Librandi, Feb 10 2012

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 10 2012

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {170, 678, 1524}, 50] (* Vincenzo Librandi, Feb 10 2012 *)

PROG

(MAGMA)[169*n^2+n: n in [1..50]]

(PARI) for(n=1, 50, print1(169*n^2+n ", ")); \\ Vincenzo Librandi, Feb 10 2012

CROSSREFS

Cf. A031704, A158000.

Sequence in context: A045089 A114078 A031704 * A301867 A281397 A206122

Adjacent sequences:  A173272 A173273 A173274 * A173276 A173277 A173278

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Nov 22 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 07:51 EDT 2021. Contains 343909 sequences. (Running on oeis4.)