login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173274 Primes of the form x^2 + 18480*y^2. 1
18481, 19009, 19441, 20161, 21961, 31249, 41281, 47041, 48409, 51241, 68209, 70009, 70921, 74209, 74449, 74761, 75289, 76129, 76561, 77641, 80809, 84121, 85369, 86689, 87649, 90841, 91081, 91921, 93241, 97441, 102001, 102481, 106681 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The primes p of the form x^2 + 18480*y^2 are also of the multi-forms x^2 + y^2, x^2 + 2*y^2, x^2 + 3*y^2, ..., x^2 + 11*y^2, x^2 + 12*y^2, but the reverse is false. For example, p = 7561 has twelve forms, but is not of the form x^2 + 18480*y^2.

REFERENCES

David A. Cox, "Primes of the Form x^2 + n*y^2", Wiley, 1989, Section 3.

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1848, p. 146, Ellipses, Paris 2008.

LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

M. Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004.

EXAMPLE

18481 = 1^2 + 18480*1^2 and also 18481 = 16^2 + 135^2 = 7^2 + 2*96^2 = 127^2 + 3*28^2 = 135^2 + 4*8^2 = 74^2 + 5*51^2 = 59^2 + 6*50^2 = 97^2 + 7*36^2 = 7^2 + 8*48^2 = 16^2 + 9*45^2 = 29^2 + 10*42^2 = 65^2 + 11*36^2 = 127^2 + 12*14^2.

MAPLE

fd:=proc(a, b, c, M) local dd, xlim, ylim, x, y, t1, t2, t3, t4, i;

dd:=4*a*c-b^2;

if dd<=0 then error "Form should be positive definite."; break; fi;

t1:={};

xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd)));

ylim:=ceil( 2*sqrt(a*M/dd));

for x from 0 to xlim do

for y from -ylim to ylim do

t2 := a*x^2+b*x*y+c*y^2;

if t2 <= M then t1:={op(t1), t2}; fi; od: od:

t3:=sort(convert(t1, list));

t4:=[];

for i from 1 to nops(t3) do

   if isprime(t3[i]) then t4:=[op(t4), t3[i]]; fi; od:

[[seq(t3[i], i=1..nops(t3))], [seq(t4[i], i=1..nops(t4))]];

end;

fd(1, 0, 18480, 100000);

MATHEMATICA

QuadPrimes2[1, 0, 18480, 100000] (* see A106856 *)

(* Second program: *)

max = 107000; m = 18480; Table[yy = {y, 1, Floor[Sqrt[max-x^2]/(Sqrt[m])]}; Table[x^2 + m y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]&

PROG

(PARI)

fc(a, b, c, M) = {

  my(t1=List(), t2);

  forprime(p=2, prime(M),

    t2 = qfbsolve(Qfb(a, b, c), p);

    if(t2 != 0, listput(t1, p))

  );

  Vec(t1)

};

fc(1, 0, 18480, 100000)

CROSSREFS

Cf. A139668: primes of the form x^2 + 1848*y^2;

Cf. A139665: primes of the form x^2 + 840*y^2.

Sequence in context: A190110 A157738 A247205 * A237012 A031817 A236816

Adjacent sequences:  A173271 A173272 A173273 * A173275 A173276 A173277

KEYWORD

nonn

AUTHOR

Michel Lagneau, Feb 14 2010, Jun 08 2010

EXTENSIONS

Corrected sequence and replaced defective program. - Ray Chandler, Aug 14 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 17:11 EDT 2021. Contains 343829 sequences. (Running on oeis4.)