login
A173274
Primes of the form x^2 + 18480*y^2.
1
18481, 19009, 19441, 20161, 21961, 31249, 41281, 47041, 48409, 51241, 68209, 70009, 70921, 74209, 74449, 74761, 75289, 76129, 76561, 77641, 80809, 84121, 85369, 86689, 87649, 90841, 91081, 91921, 93241, 97441, 102001, 102481, 106681
OFFSET
1,1
COMMENTS
The primes p of the form x^2 + 18480*y^2 are also of the multi-forms x^2 + y^2, x^2 + 2*y^2, x^2 + 3*y^2, ..., x^2 + 11*y^2, x^2 + 12*y^2, but the reverse is false. For example, p = 7561 has twelve forms, but is not of the form x^2 + 18480*y^2.
REFERENCES
David A. Cox, "Primes of the Form x^2 + n*y^2", Wiley, 1989, Section 3.
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1848, p. 146, Ellipses, Paris 2008.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
M. Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004.
EXAMPLE
18481 = 1^2 + 18480*1^2 and also 18481 = 16^2 + 135^2 = 7^2 + 2*96^2 = 127^2 + 3*28^2 = 135^2 + 4*8^2 = 74^2 + 5*51^2 = 59^2 + 6*50^2 = 97^2 + 7*36^2 = 7^2 + 8*48^2 = 16^2 + 9*45^2 = 29^2 + 10*42^2 = 65^2 + 11*36^2 = 127^2 + 12*14^2.
MAPLE
fd:=proc(a, b, c, M) local dd, xlim, ylim, x, y, t1, t2, t3, t4, i;
dd:=4*a*c-b^2;
if dd<=0 then error "Form should be positive definite."; break; fi;
t1:={};
xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd)));
ylim:=ceil( 2*sqrt(a*M/dd));
for x from 0 to xlim do
for y from -ylim to ylim do
t2 := a*x^2+b*x*y+c*y^2;
if t2 <= M then t1:={op(t1), t2}; fi; od: od:
t3:=sort(convert(t1, list));
t4:=[];
for i from 1 to nops(t3) do
if isprime(t3[i]) then t4:=[op(t4), t3[i]]; fi; od:
[[seq(t3[i], i=1..nops(t3))], [seq(t4[i], i=1..nops(t4))]];
end;
fd(1, 0, 18480, 100000);
MATHEMATICA
QuadPrimes2[1, 0, 18480, 100000] (* see A106856 *)
(* Second program: *)
max = 107000; m = 18480; Table[yy = {y, 1, Floor[Sqrt[max-x^2]/(Sqrt[m])]}; Table[x^2 + m y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]&
PROG
(PARI)
fc(a, b, c, M) = {
my(t1=List(), t2);
forprime(p=2, prime(M),
t2 = qfbsolve(Qfb(a, b, c), p);
if(t2 != 0, listput(t1, p))
);
Vec(t1)
};
fc(1, 0, 18480, 100000)
CROSSREFS
Cf. A139668: primes of the form x^2 + 1848*y^2;
Cf. A139665: primes of the form x^2 + 840*y^2.
Sequence in context: A190110 A157738 A247205 * A237012 A031817 A236816
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 14 2010, Jun 08 2010
EXTENSIONS
Corrected sequence and replaced defective program. - Ray Chandler, Aug 14 2014
STATUS
approved