login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173246
Expansion of (1+x)^50 * (1-x)/(1 - x^51).
1
1, 49, 1175, 18375, 210700, 1888460, 13771940, 83993700, 436994250, 1968555050, 7766844470, 27081460630, 84045912300, 233460867500, 582985137700, 1312983918820, 2672860120455, 4923689695575, 8206149492625, 12352414499425
OFFSET
0,2
COMMENTS
From G. C. Greubel, Feb 16 2021: (Start)
Let a(n) be the coefficients of the expansion then a(n+51) = a(n) (i.e. periodic length 50) and a(m+26) = - a(25-m) for 0 <= m <= 24.
Expansions of the form (1+x)^m * (1-x)/(1 - x^(m+1)) have the coefficients a(n) = Sum_{j=0..(m+1)*n} ( binomial(m, n-(m+1)*j) - binomial(m, n-(m+1)*j-1) ). (End)
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1).
FORMULA
G.f.: (1+x)^50 / Sum_{j=0..50} x^j.
From G. C. Greubel, Feb 16 2021: (Start)
G.f.: (1+x)^50 * (1-x)/(1 - x^51).
a(n) = (-1)*Sum_{j=1..50} a(n-j) for n > 50.
a(n) = Sum_{j=0..51*n} ( binomial(50, n-51*j) - binomial(50, n-51*j-1) ), n > 0. (End)
MAPLE
m:= 40;
S:= series( (1+x)^50*(1-x)/(1-x^51), x, m+1);
seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Feb 16 2021
MATHEMATICA
CoefficientList[Series[(1+x)^50*(1-x)/(1-x^51), {x, 0, 40}], x] (* modified by G. C. Greubel, Feb 16 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x)^50*(1-x)/(1-x^51) )); // G. C. Greubel, Feb 16 2021
(Sage)
def A173246_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)^50*(1-x)/(1-x^51) ).list()
A173246_list(40) # G. C. Greubel, Feb 16 2021
CROSSREFS
Cf. A173245.
Sequence in context: A284642 A304046 A264877 * A017765 A163005 A161694
KEYWORD
sign,easy,less
AUTHOR
Roger L. Bagula, Feb 13 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 16 2021
STATUS
approved