login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 5 nonattacking knights on an n X n cylindrical board.
1

%I #9 Sep 12 2015 11:00:22

%S 0,0,0,208,3210,58056,458157,2524176,10587591,36576380,109008735,

%T 289450344,700477401,1570789892,3304892985,6586928032,12530769343,

%U 22891446252

%N Number of ways to place 5 nonattacking knights on an n X n cylindrical board.

%H Vincenzo Librandi, <a href="/A172967/b172967.txt">Table of n, a(n) for n = 1..1000</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>

%F Explicit formula: a(n) = n*(n^9-90n^7+120n^6+3395n^5-8160n^4-62130n^3+204000n^2+463464n-1888080)/120, n>=10. For any fixed value of k > 1, a(n) = n^(2k)/k! - 9n^(2k-2)/2/(k-2)! + 6n^(2k-3)/(k-2)! + ... [_Vaclav Kotesovec_, Jan 31 2010]

%F G.f.: -x^4*(468*x^16-7964*x^15+57164*x^14-238936*x^13+664383*x^12-1323653*x^11+1986964*x^10-2334676*x^9+2209082*x^8-1718662*x^7+1118210*x^6-595746*x^5+216519*x^4-38229*x^3+34186*x^2+922*x+208)/(x-1)^11. [_Vaclav Kotesovec_, Mar 25 2010]

%t CoefficientList[Series[- x^3 (468 x^16 - 7964 x^15 + 57164 x^14 - 238936 x^13 + 664383 x^12 - 1323653 x^11 + 1986964 x^10 - 2334676 x^9 + 2209082 x^8 - 1718662 x^7 + 1118210 x^6 - 595746 x^5 + 216519 x^4 - 38229 x^3 + 34186 x^2 + 922 x + 208) / (x - 1)^11, {x, 0, 50}], x] (* _Vincenzo Librandi_, May 29 2013 *)

%Y Cf. A172532, A172136, A172964, A172965, A172966.

%K nonn,easy

%O 1,4

%A _Vaclav Kotesovec_, Feb 06 2010