login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172967
Number of ways to place 5 nonattacking knights on an n X n cylindrical board.
1
0, 0, 0, 208, 3210, 58056, 458157, 2524176, 10587591, 36576380, 109008735, 289450344, 700477401, 1570789892, 3304892985, 6586928032, 12530769343, 22891446252
OFFSET
1,4
FORMULA
Explicit formula: a(n) = n*(n^9-90n^7+120n^6+3395n^5-8160n^4-62130n^3+204000n^2+463464n-1888080)/120, n>=10. For any fixed value of k > 1, a(n) = n^(2k)/k! - 9n^(2k-2)/2/(k-2)! + 6n^(2k-3)/(k-2)! + ... [Vaclav Kotesovec, Jan 31 2010]
G.f.: -x^4*(468*x^16-7964*x^15+57164*x^14-238936*x^13+664383*x^12-1323653*x^11+1986964*x^10-2334676*x^9+2209082*x^8-1718662*x^7+1118210*x^6-595746*x^5+216519*x^4-38229*x^3+34186*x^2+922*x+208)/(x-1)^11. [Vaclav Kotesovec, Mar 25 2010]
MATHEMATICA
CoefficientList[Series[- x^3 (468 x^16 - 7964 x^15 + 57164 x^14 - 238936 x^13 + 664383 x^12 - 1323653 x^11 + 1986964 x^10 - 2334676 x^9 + 2209082 x^8 - 1718662 x^7 + 1118210 x^6 - 595746 x^5 + 216519 x^4 - 38229 x^3 + 34186 x^2 + 922 x + 208) / (x - 1)^11, {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Feb 06 2010
STATUS
approved