Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 22 2023 07:49:57
%S 1,1172556,306407299538340,2144953893641078315315520,
%T 178394712594906480448637769546038400,
%U 107858549105202487690102571993535153527817734400
%N Number of 5*n X 2*n 0..1 arrays with row sums 2 and column sums 5.
%D Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
%H R. H. Hardin, <a href="/A172591/b172591.txt">Table of n, a(n) for n = 1..19</a>
%F a(n) = 120^(-2n)*Sum_{j=0..2n} Sum_{k=0..2n-j} ((-10)^k*15^(2n-j-k)*(2n)!(5n)!(2n+4j+2k)!/(j!k!(2n-j-k)!(n+2j+k)!*2^(n+2j+k))). - _Shanzhen Gao_, Feb 16 2010
%F a(n) ~ sqrt(Pi) * 5^(8*n + 1/2) * n^(10*n + 1/2) / (2^(n-1) * 3^(2*n) * exp(10*n + 2)). - _Vaclav Kotesovec_, Oct 22 2023
%t Table[120^(-2*n) * Sum[Sum[((-10)^k * 15^(2*n-j-k)*(2*n)!*(5*n)!*(2*n+4*j+2*k)! / (j!*k!*(2*n-j-k)!*(n+2*j+k)!*2^(n+2*j+k))), {k,0,2*n-j}], {j,0,2*n}], {n,1,12}] (* _Vaclav Kotesovec_, Oct 22 2023 *)
%o (PARI) a(n) = 120^(-2*n)*sum(j=0, 2*n, sum(k=0, 2*n-j, ((-10)^k*15^(2*n-j-k)*(2*n)!*(5*n)!*(2*n+4*j+2*k)!/(j!*k!*(2*n-j-k)!*(n+2*j+k)!*2^(n+2*j+k))))); \\ _Michel Marcus_, Jan 18 2018
%K nonn
%O 1,2
%A _R. H. Hardin_, Feb 06 2010