login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172591
Number of 5*n X 2*n 0..1 arrays with row sums 2 and column sums 5.
1
1, 1172556, 306407299538340, 2144953893641078315315520, 178394712594906480448637769546038400, 107858549105202487690102571993535153527817734400
OFFSET
1,2
REFERENCES
Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
LINKS
FORMULA
a(n) = 120^(-2n)*Sum_{j=0..2n} Sum_{k=0..2n-j} ((-10)^k*15^(2n-j-k)*(2n)!(5n)!(2n+4j+2k)!/(j!k!(2n-j-k)!(n+2j+k)!*2^(n+2j+k))). - Shanzhen Gao, Feb 16 2010
a(n) ~ sqrt(Pi) * 5^(8*n + 1/2) * n^(10*n + 1/2) / (2^(n-1) * 3^(2*n) * exp(10*n + 2)). - Vaclav Kotesovec, Oct 22 2023
MATHEMATICA
Table[120^(-2*n) * Sum[Sum[((-10)^k * 15^(2*n-j-k)*(2*n)!*(5*n)!*(2*n+4*j+2*k)! / (j!*k!*(2*n-j-k)!*(n+2*j+k)!*2^(n+2*j+k))), {k, 0, 2*n-j}], {j, 0, 2*n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 22 2023 *)
PROG
(PARI) a(n) = 120^(-2*n)*sum(j=0, 2*n, sum(k=0, 2*n-j, ((-10)^k*15^(2*n-j-k)*(2*n)!*(5*n)!*(2*n+4*j+2*k)!/(j!*k!*(2*n-j-k)!*(n+2*j+k)!*2^(n+2*j+k))))); \\ Michel Marcus, Jan 18 2018
CROSSREFS
Sequence in context: A288077 A112043 A114677 * A250962 A210411 A204777
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2010
STATUS
approved