login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 4 nonattacking knights on an n X n toroidal board.
5

%I #15 Feb 20 2018 14:53:33

%S 0,0,0,228,600,12357,68796,275888,872532,2344025,5580762,12107196,

%T 24392446,46261537,83426400,144157632,240119696,387393921,607715342,

%U 929951100

%N Number of ways to place 4 nonattacking knights on an n X n toroidal board.

%H Vincenzo Librandi, <a href="/A172531/b172531.txt">Table of n, a(n) for n = 1..1000</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>

%F a(n) = n^2*(n^6 - 54*n^4 + 1115*n^2 - 8934)/24, n>=9.

%F G.f.: x^4 * (192*x^13 -1728*x^12 +7452*x^11 -21238*x^10 +46658*x^9 -84582*x^8 +125397*x^7 -144875*x^6 +124920*x^5 -79904*x^4 +39969*x^3 -15165*x^2 +1452*x -228) / (x-1)^9. - _Vaclav Kotesovec_, Mar 25 2010

%t CoefficientList[Series[x^3 (192 x^13 - 1728 x^12 + 7452 x^11 - 21238 x^10 + 46658 x^9 - 84582 x^8 + 125397 x^7 - 144875 x^6 + 124920 x^5 - 79904 x^4 + 39969 x^3 - 15165 x^2 + 1452 x - 228) / (x - 1)^9, {x, 0, 50}], x] (* _Vincenzo Librandi_, May 29 2013 *)

%Y Cf. A172529, A172530, A172135, A172519.

%K nonn,easy

%O 1,4

%A _Vaclav Kotesovec_, Feb 06 2010