login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172465
Numbers n such that phi(phi(n)) + sigma(sigma(n)) is an 8th power.
1
42, 101, 6720, 9212, 226570, 276404, 288086, 299668, 339098, 392228, 412276, 423395, 530917, 535759, 559427, 564209, 666181, 2835284, 3592300, 3911744, 4080100, 5980673, 7230960, 8787900, 14960924, 17130550, 23324242, 27449729, 30437729, 33869141, 42073800
OFFSET
1,1
REFERENCES
W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc., 14 (1993), 415-416.
R. K. Guy, Unsolved Problems in Number Theory, B42.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
K. Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 27-34.
Eric Weisstein's World of Mathematics, Carmichael's Totient Function conjecture
EXAMPLE
phi(phi(9)) + sigma(sigma(9))= 1;
phi(phi(42)) + sigma(sigma(42))= 2^8 = 256;
phi(phi(101)) + sigma(sigma(101))= 2^8 = 256;
phi(phi(6720)) + sigma(sigma(6720))= 4^8 = 65536.
MAPLE
with(numtheory):for n from 1 to 2000000 do; if floor(( phi(phi(n)) + sigma(sigma(n)))^.125) = (phi(phi(n)) + sigma(sigma(n)))^.125 then print (n); fi ; od;
PROG
(PARI) isok(n) = ispower(eulerphi(eulerphi(n)) + sigma(sigma(n)), 8); \\ Michel Marcus, Sep 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 03 2010
EXTENSIONS
a(10) corrected and a(18)-a(31) added by Hiroaki Yamanouchi, Sep 19 2014
STATUS
approved