Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 16 2019 11:19:05
%S 1,2,4,8,17,27,33,77,121,165,209,212,256,300,344,366,1054,1764,2474,
%T 3184,3894,4604,5314,6024,6734,7444,8154,8864,9574,10284,10994,11704,
%U 12414,13124,13834,14544,15254,15964,16674,17384,18094,18804,19514
%N a(1) = 1, and for each k >=2, a(k) is the smallest number n such that n/cos(n) > a(k)/cos(a(k)), so that a(1)/cos(a(1)) > a(2)/cos(a(2)) > ... > a(k)/cos(a(k)) > ...
%D J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 29, Ellipses, Paris 2008. Also Entry 137, p. 47.
%H Amiram Eldar, <a href="/A172446/b172446.txt">Table of n, a(n) for n = 1..100</a>
%e 1/cos(1) = 1.850815..., 2/cos(2) = -4.805995..., 4/cos(4) = -6.119542...
%p a:= evalf(1/cos(1)); for n from 2 to 10000000 do; if a > evalf(n/cos(n)) then a:= evalf(n/cos(n)); print(n); else fi ; od;
%t s = {1}; rm = 1/Cos[1]; Do[r = n/Cos[n]; If[r < rm, rm = r; AppendTo[s, n]], {n, 2, 2*10^4}]; s (* _Amiram Eldar_, Aug 11 2019 *)
%Y Cf. A172448.
%K nonn
%O 1,2
%A _Michel Lagneau_, Feb 03 2010
%E a(35) corrected by _Amiram Eldar_, Aug 11 2019