login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172446
a(1) = 1, and for each k >=2, a(k) is the smallest number n such that n/cos(n) > a(k)/cos(a(k)), so that a(1)/cos(a(1)) > a(2)/cos(a(2)) > ... > a(k)/cos(a(k)) > ...
3
1, 2, 4, 8, 17, 27, 33, 77, 121, 165, 209, 212, 256, 300, 344, 366, 1054, 1764, 2474, 3184, 3894, 4604, 5314, 6024, 6734, 7444, 8154, 8864, 9574, 10284, 10994, 11704, 12414, 13124, 13834, 14544, 15254, 15964, 16674, 17384, 18094, 18804, 19514
OFFSET
1,2
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 29, Ellipses, Paris 2008. Also Entry 137, p. 47.
LINKS
EXAMPLE
1/cos(1) = 1.850815..., 2/cos(2) = -4.805995..., 4/cos(4) = -6.119542...
MAPLE
a:= evalf(1/cos(1)); for n from 2 to 10000000 do; if a > evalf(n/cos(n)) then a:= evalf(n/cos(n)); print(n); else fi ; od;
MATHEMATICA
s = {1}; rm = 1/Cos[1]; Do[r = n/Cos[n]; If[r < rm, rm = r; AppendTo[s, n]], {n, 2, 2*10^4}]; s (* Amiram Eldar, Aug 11 2019 *)
CROSSREFS
Cf. A172448.
Sequence in context: A090804 A342773 A080281 * A320331 A289322 A349842
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 03 2010
EXTENSIONS
a(35) corrected by Amiram Eldar, Aug 11 2019
STATUS
approved