login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Mirrored triangle A120072 read by rows.
7

%I #21 Jul 28 2023 16:25:03

%S 3,5,8,7,3,15,9,16,21,24,11,5,1,2,35,13,24,33,40,45,48,15,7,39,3,55,

%T 15,63,17,32,5,56,65,8,77,80,19,9,51,4,3,21,91,6,99,21,40,57,72,85,96,

%U 105,112,117,120,23,11,7,5,95,1,119,1,5,35,143,25,48,69,88,105,120,133,144

%N Mirrored triangle A120072 read by rows.

%C A table of numerators of 1/n^2 - 1/m^2 extended to negative m looks as follows, stacked such that values of common m are aligned

%C and the central column of -1 is defined for m=0:

%C .............................0..-1...0...3...8..15..24..35..48..63..80..99. A005563

%C .........................0..-3..-1..-3...0...5...3..21...2..45..15..77...6. A061037

%C .....................0..-5..-8..-1..-8..-5...0...7..16...1..40..55...8..91. A061039

%C .................0..-7..-3.-15..-1.-15..-3..-7...0...9...5..33...3..65..21. A061041

%C .............0..-9.-16.-21.-24..-1.-24.-21.-16..-9...0..11..24..39..56...3. A061043

%C .........0.-11..-5..-1..-2.-35..-1.-35..-2..-1..-5.-11...0..13...7...5...4. A061045

%C .....0.-13.-24.-33.-40.-45.-48..-1.-48.-45.-40.-33.-24.-13...0..15..32..51. A061047

%C .0.-15..-7.-39..-3.-55.-15.-63..-1.-63.-15.-55..-3.-39..-7.-15...0..17...9. A061049

%C The row-reversed variant of A120072 appears (negated) after the leftmost 0.

%C Equals A061035 with the first column removed. - _Georg Fischer_, Jul 26 2023

%H G. C. Greubel, <a href="/A172370/b172370.txt">Rows n = 2..100 of triangle, flattened</a>

%F T(n,m) = numerator of 1/(n-m)^2 - 1/n^2, n >= 2, 1 <= m < n. - _R. J. Mathar_, Nov 23 2010

%e The table starts

%e 3

%e 5 8

%e 7 3 15

%e 9 16 21 24

%e 11 5 1 2 35

%e 13 24 33 40 45 48

%e 15 7 39 3 55 15 63

%e 17 32 5 56 65 8 77 80

%e 19 9 51 4 3 21 91 6 99

%t Table[Numerator[1/(n-k)^2 -1/n^2], {n, 2, 20}, {k, 1, n-1}]//Flatten (* _G. C. Greubel_, Sep 20 2018 *)

%o (PARI) for(n=2,20, for(k=1,n-1, print1(numerator(1/(n-k)^2 -1/n^2), ", "))) \\ _G. C. Greubel_, Sep 20 2018

%o (Magma) [[Numerator(1/(n-k)^2 -1/n^2): k in [1..n-1]]: n in [2..20]]; // _G. C. Greubel_, Sep 20 2018

%Y Lower diagonal gives: A070262, A061037(n+2).

%Y Cf. A061035, A172157, A165795.

%K nonn,easy,tabl

%O 2,1

%A _Paul Curtz_, Feb 01 2010

%E Comment rewritten and offset set to 2 by _R. J. Mathar_, Nov 23 2010