OFFSET
0,17
COMMENTS
Start from A143454 and its partial products c(n) = 1, 1, 1, 1, 1, 4, 28, 280, 3640, 91000, 4186000, ... . Then T(n,k) = round(c(n)/(c(k)*c(n-k))).
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = f(n-1, q) + q*f(n-4, q), f(0, q) = 0, f(1, q) = f(2, q) = f(3, q) = 1, and q = 3. - G. C. Greubel, May 08 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 4, 4, 4, 4, 1;
1, 7, 28, 28, 28, 7, 1;
1, 10, 70, 280, 280, 70, 10, 1;
1, 13, 130, 910, 3640, 910, 130, 13, 1;
1, 25, 325, 3250, 22750, 22750, 3250, 325, 25, 1;
1, 46, 1150, 14950, 149500, 261625, 149500, 14950, 1150, 46, 1;
MATHEMATICA
f[n_, q_]:= f[n, q]= If[n==0, 0, If[n<4, 1, f[n-1, q] +q*f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j, n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n - k, q])];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, q): return 0 if (n==0) else 1 if (n<4) else f(n-1, q) + q*f(n-4, q)
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): round(return c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Feb 01 2010
EXTENSIONS
Definition corrected to give integral terms, G. C. Greubel, May 08 2021
STATUS
approved