login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172227
Number of ways to place 4 nonattacking wazirs on an n X n board.
11
0, 0, 6, 405, 5024, 31320, 133544, 446421, 1258590, 3126724, 7042930, 14669709, 28658436, 53069000, 93909924, 159819965, 262913874, 419816676, 652912510, 991835749, 1475233800, 2152832664, 3087838016, 4359706245, 6067321574, 8332617060, 11304678954
OFFSET
1,3
COMMENTS
A wazir is a (fairy chess) leaper [0,1].
LINKS
J. Brazeal Slides on a Chessboard, Math Horizons, Vol. 27, pp. 24-27, April 2020.
Eric Weisstein's World of Mathematics, Grid Graph
Wikipedia, Wazir (chess)
FORMULA
a(n) = (n^8-30n^6+24n^5+323n^4-504n^3-1110n^2+2760n-1224)/24, n>=3.
G.f.: -x^3*(4*x^8-26*x^7+3*x^6+303*x^5-736*x^4+180*x^3+1595*x^2+351*x+6)/(x-1)^9. - Vaclav Kotesovec, Apr 29 2011
a(n) = A232833(n,4). - R. J. Mathar, Apr 11 2024
MATHEMATICA
CoefficientList[Series[- x^2 (4 x^8 - 26 x^7 + 3 x^6 + 303 x^5 - 736 x^4 + 180 x^3 + 1595 x^2 + 351 x + 6) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 29 2010
EXTENSIONS
Corrected a(3) and g.f., Vaclav Kotesovec, Apr 29 2011
STATUS
approved