OFFSET
1,1
COMMENTS
This sequence is related to the ABC conjecture.
EXAMPLE
a(1)=7 because the maxima of log(7)/log(N(a, 7-a, 7)) occur at two distinct values, a=1 and a=3. In both cases, (log(c)/log(N(a,b,c)) is equal to log(7)/log(42).
MATHEMATICA
cc = {}; Do[k = x; w = Floor[(k - 1)/2]; logmax = 0; nmax = 0; nmax1 = 0; radmax = 0; logequal = 0; Do[If[(GCD[n, k] == 1) && (GCD[n, k - n] == 1) && (GCD[k, k - n] == 1), m = FactorInteger[k n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log == logmax, logequal = log; nmax1 = n]; If[log > logmax, nmax = n; logmax = log]], {n, 1, w}]; If[logequal == logmax, AppendTo[cc, k]], {x, 3, 100}]; cc
PROG
(PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947
isok(n) = {my(lim = if (n%2, n\2, n/2 - 1), v = vector(lim, k, if (gcd([k, n, n-k]) == 1, log(n)/log(rad(k*(n-k)*n)), 0))); if (#v, #select(x->(x==vecmax(v)), v) > 1); } \\ Michel Marcus, Aug 04 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 26 2010
EXTENSIONS
Offset 1 and name corrected by Michel Marcus, Aug 04 2019
STATUS
approved