login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((n+1)*2^n + 1)*(2^n + 1)^(n-1).
3

%I #8 Jan 20 2017 02:49:31

%S 1,5,65,2673,397953,228882753,520970490625,4723480504289025,

%T 170687922720157732865,24563695027660686202250241,

%U 14068441356460459384918212890625,32058887942708146080692278858371608577,290694663888102785007861162394348756446314497

%N a(n) = ((n+1)*2^n + 1)*(2^n + 1)^(n-1).

%H Vincenzo Librandi, <a href="/A171800/b171800.txt">Table of n, a(n) for n = 0..58</a>

%F O.G.f.: Sum_{n>=0} (n+1)*2^(n^2) * x^n/(1 - 2^n*x)^(n+1).

%F E.g.f.: Sum_{n>=0} (n+1)*2^(n^2) * exp(2^n*x) * x^n/n!.

%e G.f.: A(x) = 1 + 5*x + 65*x^2 + 2673*x^3 + 397953*x^4 +...

%e A(x) = 1/(1-x) + 2*2*x/(1-2*x)^2 + 3*2^4*x^2/(1-2^2*x)^3 + 4*2^9*x^3/(1-2^3*x)^4 +...

%t Table[((n + 1)*2^n + 1)*(2^n + 1)^(n - 1), {n, 0, 15}] (* _Wesley Ivan Hurt_, Jan 19 2017 *)

%o (PARI) {a(n)=polcoeff(sum(m=0,n,(m+1)*2^(m^2)*x^m/(1-2^m*x+x*O(x^n))^(m+1)),n)}

%o (PARI) {a(n)=n!*polcoeff(sum(k=0, n, (k+1)*2^(k^2)*exp(2^k*x)*x^k/k!), n)}

%o (PARI) {a(n)=((n+1)*2^n+1)*(2^n+1)^(n-1)}

%Y Cf. A136516, A171801, A171799.

%K nonn,easy

%O 0,2

%A _Paul D. Hanna_, Jan 20 2010