login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171800
a(n) = ((n+1)*2^n + 1)*(2^n + 1)^(n-1).
3
1, 5, 65, 2673, 397953, 228882753, 520970490625, 4723480504289025, 170687922720157732865, 24563695027660686202250241, 14068441356460459384918212890625, 32058887942708146080692278858371608577, 290694663888102785007861162394348756446314497
OFFSET
0,2
LINKS
FORMULA
O.G.f.: Sum_{n>=0} (n+1)*2^(n^2) * x^n/(1 - 2^n*x)^(n+1).
E.g.f.: Sum_{n>=0} (n+1)*2^(n^2) * exp(2^n*x) * x^n/n!.
EXAMPLE
G.f.: A(x) = 1 + 5*x + 65*x^2 + 2673*x^3 + 397953*x^4 +...
A(x) = 1/(1-x) + 2*2*x/(1-2*x)^2 + 3*2^4*x^2/(1-2^2*x)^3 + 4*2^9*x^3/(1-2^3*x)^4 +...
MATHEMATICA
Table[((n + 1)*2^n + 1)*(2^n + 1)^(n - 1), {n, 0, 15}] (* Wesley Ivan Hurt, Jan 19 2017 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*2^(m^2)*x^m/(1-2^m*x+x*O(x^n))^(m+1)), n)}
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, (k+1)*2^(k^2)*exp(2^k*x)*x^k/k!), n)}
(PARI) {a(n)=((n+1)*2^n+1)*(2^n+1)^(n-1)}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jan 20 2010
STATUS
approved