|
|
A171762
|
|
a(n) = Sum_{k=n^2+1..(n+1)^2-1} tau(k).
|
|
1
|
|
|
4, 12, 22, 34, 44, 58, 72, 88, 100, 120, 126, 148, 164, 182, 196, 220, 228, 254, 264, 284, 304, 328, 338, 358, 382, 400, 420, 444, 442, 478, 494, 518, 544, 564, 562, 602, 622, 648, 652, 690, 684, 730, 740, 768, 790, 812, 828, 858, 870, 898, 920, 946, 958, 990
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..54.
|
|
FORMULA
|
a(n) = A168011(n) - A168011(n-1) - A048691(n). - R. J. Mathar, Jan 25 2010
|
|
MAPLE
|
A168011 := proc(n) add( numtheory[tau](k), k=1..n^2+2*n) ; end proc: A048691 := proc(n) numtheory[tau](n^2) ; end proc: A171762 := proc(n) A168011(n)-A168011(n-1)-A048691(n) ; end proc: seq(A171762(n), n=1..80) ; # R. J. Mathar, Jan 25 2010
|
|
MATHEMATICA
|
Array[n \[Function] Sum[DivisorSigma[0, k], {k, n^2 + 1, (n + 1)^2 - 1}], 200] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)
|
|
CROSSREFS
|
Cf. A000005, A048691, A168011.
Sequence in context: A301263 A047956 A301228 * A210639 A301260 A301185
Adjacent sequences: A171759 A171760 A171761 * A171763 A171764 A171765
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Giovanni Teofilatto, Dec 18 2009
|
|
EXTENSIONS
|
Definition corrected by Giovanni Teofilatto, Dec 19 2009
More terms from R. J. Mathar and J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
|
|
STATUS
|
approved
|
|
|
|