login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171729
Triangle of differences of Fibonacci numbers, rows ascending.
2
1, 1, 2, 1, 2, 3, 2, 3, 4, 5, 3, 5, 6, 7, 8, 5, 8, 10, 11, 12, 13, 8, 13, 16, 18, 19, 20, 21, 13, 21, 26, 29, 31, 32, 33, 34, 21, 34, 42, 47, 50, 52, 53, 54, 55, 34, 55, 68, 76, 81, 84, 86, 87, 88, 89, 55, 89, 110, 123, 131, 136, 139, 141, 142, 143, 144, 89, 144, 178, 199, 212, 220, 225, 228, 230, 231, 232, 233
OFFSET
1,3
COMMENTS
The numbers missing from this triangle form A050939.
Row n of this triangle has one more term than row n of A143061.
Reversing the rows gives A171730.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
FORMULA
Counting the top row as the first row, the n-th row is
F(n+1)-F(n), F(n+1)-F(n-1), ..., F(n+1)-F(2), F(n+1)-F(0).
EXAMPLE
First rows:
1
1 2
1 2 3
2 3 4 5
3 5 6 7 8
5 8 10 11 12 13
...
MAPLE
F:= combinat[fibonacci]:
T:= (n, k)-> F(n+1)-`if`(k=n, 0, F(n-k+1)):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Feb 06 2023
MATHEMATICA
Table[Fibonacci[n + 1] - If[k < n, Fibonacci[n - k + 1], 0], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Feb 06 2023 *)
PROG
(PARI) row(n) = vector(n, k, fibonacci(n+1) - if (k<n, fibonacci(n-k+1), 0)); \\ Michel Marcus, Feb 06 2023
CROSSREFS
KEYWORD
nonn,tabl,changed
AUTHOR
Clark Kimberling, Dec 16 2009
STATUS
approved