login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171423 Decimal expansion of C_1 constant of Melas arising in Calderon-Zygmund theory. 0
1, 5, 6, 7, 5, 2, 0, 8, 0, 6, 3, 2, 5, 5, 5, 4, 5, 3, 2, 8, 4, 4, 1, 4, 3, 5, 6, 1, 3, 1, 3, 2, 5, 8, 4, 5, 1, 1, 3, 0, 6, 9, 2, 0, 9, 4, 7, 2, 0, 7, 1, 3, 6, 0, 8, 3, 4, 8, 1, 0, 3, 6, 4, 6, 6, 8, 2, 5, 6, 5, 4, 6, 5, 7, 4, 4, 7, 2, 7, 2, 5, 4, 5, 3, 5, 4, 5, 2, 7, 5, 4, 3, 5, 5, 5, 8, 3, 7, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Digits of the largest solution of 12*x^2 - 22*x + 5 = 0. - Jonathan Sondow, Oct 01 2013

LINKS

Table of n, a(n) for n=1..99.

Antonios D. Melas, The best constant for the centered Hardy-Littlewood maximal inequality, Ann. of Math. (2) 157 (2003), no. 2, 647-688. arXiv:0311452.

Terry Tao, Random Martingales and localization of maximal inequalities.

FORMULA

Equals (11+(61^(1/2)))/12 = 1.5675208063255545328441435613132584511306920947...

MATHEMATICA

First[ RealDigits[ N[ (11 + Sqrt[61])/12, 100]]] (* Jonathan Sondow, Oct 01 2013 *)

PROG

(PARI) (sqrt(61)+11)/12 \\ Charles R Greathouse IV, Oct 01 2013

CROSSREFS

Sequence in context: A267017 A021642 A299082 * A101288 A212479 A095942

Adjacent sequences:  A171420 A171421 A171422 * A171424 A171425 A171426

KEYWORD

cons,easy,nonn

AUTHOR

Jonathan Vos Post, Dec 08 2009

EXTENSIONS

Sequence and formula corrected by Jonathan Sondow, Oct 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 12:27 EDT 2019. Contains 323393 sequences. (Running on oeis4.)