login
A171423
Decimal expansion of C_1 constant of Melas for the centered Hardy-Littlewood maximal inequality.
0
1, 5, 6, 7, 5, 2, 0, 8, 0, 6, 3, 2, 5, 5, 5, 4, 5, 3, 2, 8, 4, 4, 1, 4, 3, 5, 6, 1, 3, 1, 3, 2, 5, 8, 4, 5, 1, 1, 3, 0, 6, 9, 2, 0, 9, 4, 7, 2, 0, 7, 1, 3, 6, 0, 8, 3, 4, 8, 1, 0, 3, 6, 4, 6, 6, 8, 2, 5, 6, 5, 4, 6, 5, 7, 4, 4, 7, 2, 7, 2, 5, 4, 5, 3, 5, 4, 5, 2, 7, 5, 4, 3, 5, 5, 5, 8, 3, 7, 4
OFFSET
1,2
COMMENTS
Digits of the largest solution of 12*x^2 - 22*x + 5 = 0. - Jonathan Sondow, Oct 01 2013
LINKS
Steven Finch, Hardy-Littlewood Maximal Inequalities, Oct. 12, 2003, page 2.
Antonios D. Melas, The best constant for the centered Hardy-Littlewood maximal inequality, Ann. of Math. (2) 157 (2003), no. 2, 647-688; arXiv:0311452 [math.CA], 2003.
FORMULA
Equals (11+(61^(1/2)))/12 = 1.5675208063255545328441435613132584511306920947...
MATHEMATICA
First[ RealDigits[ N[ (11 + Sqrt[61])/12, 100]]] (* Jonathan Sondow, Oct 01 2013 *)
PROG
(PARI) (sqrt(61)+11)/12 \\ Charles R Greathouse IV, Oct 01 2013
CROSSREFS
Sequence in context: A021642 A342218 A299082 * A101288 A212479 A095942
KEYWORD
cons,easy,nonn
AUTHOR
Jonathan Vos Post, Dec 08 2009
EXTENSIONS
Sequence and formula corrected by Jonathan Sondow, Oct 01 2013
More specific title by Hugo Pfoertner, Mar 29 2020
STATUS
approved