Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 08 2022 08:45:49
%S 8,18,172,1176,8432,60000,427456,3044736,21688064,154486272,
%T 1100422144,7838423040,55833915392,397710876672,2832936583168,
%U 20179306512384,143739331739648,1023870442536960,7293137309138944,51949787395129344,370043822843887616
%N a(n) = 6*a(n-1) + 8*a(n-2) with a(1) = 8, a(2) = 18.
%C Seen on a quiz.
%C The recurrence was supplied by _Zak Seidov_, Dec 07 2009.
%H Vincenzo Librandi, <a href="/A171371/b171371.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,8).
%F G.f.: 2*x*(-4 + 15*x)/(-1 + 6*x + 8*x^2). - _V.J. Pohjola_, Dec 07 2009
%F a(n) = 8*A189800(n) - 30*A189800(n-1). - _R. J. Mathar_, Nov 17 2011
%F From _Franck Maminirina Ramaharo_, Nov 23 2018: (Start)
%F a(n) = ((77*sqrt(17) - 255)*(sqrt(17) + 3)^n - (77*sqrt(17) + 255)*(3 - sqrt(17))^n)/136.
%F E.g.f.: ((77*sqrt(17)*sinh(sqrt(17)*x) - 255*cosh(sqrt(17)*x))*exp(3*x) + 255)/68. (End)
%t a[1] = 8; a[2] = 18; a[n_] := a[n] = 6*a[n - 1] + 8*a[n - 2]; Array[a, 20] (* _Amiram Eldar_, Nov 23 2018 *)
%o (Magma) I:=[8,18]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 18 2011
%K nonn,easy
%O 1,1
%A Anonymous, Dec 06 2009
%E More terms from _N. J. A. Sloane_, Dec 07 2009
%E G.f. and name adapted to the offset by _Bruno Berselli_, Apr 04 2011