login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171371 a(n) = 6*a(n-1) + 8*a(n-2) with a(1) = 8, a(2) = 18. 1
8, 18, 172, 1176, 8432, 60000, 427456, 3044736, 21688064, 154486272, 1100422144, 7838423040, 55833915392, 397710876672, 2832936583168, 20179306512384, 143739331739648, 1023870442536960, 7293137309138944, 51949787395129344, 370043822843887616 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Seen on a quiz.

The recurrence was supplied by Zak Seidov, Dec 07 2009.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Index entries for linear recurrences with constant coefficients, signature (6,8).

FORMULA

G.f.: 2*x*(-4 + 15*x)/(-1 + 6*x + 8*x^2). - V.J. Pohjola, Dec 07 2009

a(n) = 8*A189800(n) - 30*A189800(n-1). - R. J. Mathar, Nov 17 2011

From Franck Maminirina Ramaharo, Nov 23 2018: (Start)

a(n) = ((77*sqrt(17) - 255)*(sqrt(17) + 3)^n - (77*sqrt(17) + 255)*(3 - sqrt(17))^n)/136.

E.g.f.: ((77*sqrt(17)*sinh(sqrt(17)*x) - 255*cosh(sqrt(17)*x))*exp(3*x) + 255)/68. (End)

MATHEMATICA

a[1] = 8; a[2] = 18; a[n_] := a[n] = 6*a[n - 1] + 8*a[n - 2]; Array[a, 20] (* Amiram Eldar, Nov 23 2018 *)

PROG

(MAGMA) I:=[8, 18]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011

CROSSREFS

Sequence in context: A219524 A259852 A215174 * A092692 A001151 A177367

Adjacent sequences:  A171368 A171369 A171370 * A171372 A171373 A171374

KEYWORD

nonn,easy

AUTHOR

Anonymous, Dec 06 2009

EXTENSIONS

More terms from N. J. A. Sloane, Dec 07 2009

G.f. and name adapted to the offset by Bruno Berselli, Apr 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 17:45 EST 2019. Contains 319309 sequences. (Running on oeis4.)