login
A171135
Smallest prime p such that p + 2n is prime or semiprime.
3
2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 5, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 5, 2, 3, 2, 3, 3, 3, 2, 3, 5, 3, 3, 5, 2, 3, 3, 3, 3, 5, 2, 3, 2, 5, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 5, 3, 3, 2, 3, 3, 5, 2, 3, 5, 3, 5, 3, 2, 3, 3, 3, 3, 5, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3
OFFSET
1,1
COMMENTS
For any even integer h, there exist infinitely many primes p such that p+h is either a prime or a semiprime;
A171136(n) = a(n) + 2*n;
a(A171137(n))=A000040(n) and a(m)<>A000040(n) for m < A171137(n).
LINKS
Eric Weisstein's World of Mathematics, Chen Prime
Wikipedia, Chen prime
FORMULA
A010051(a(n)) * (A010051(a(n)+2*n) + A064911(a(n)+2*n)) = 1.
MATHEMATICA
spp[n_]:=Module[{p=2}, While[PrimeOmega[p+2n]>2, p=NextPrime[p]]; p]; Array[ spp, 120] (* Harvey P. Dale, Sep 25 2018 *)
PROG
(PARI) a(n)=forprime(p=2, , if(bigomega(p+2*n)<3, return(p))) \\ Charles R Greathouse IV, Oct 21 2014
(Haskell)
a171135 n = head [p | p <- a000040_list, let x = p + 2 * n,
a064911 x == 1 || a010051' x == 1]
-- Reinhard Zumkeller, Oct 21 2014
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Reinhard Zumkeller, Dec 04 2009
STATUS
approved