login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171079
Denominator of s_{2n}, where s_0 = 1/2, s_n = | 2^n*(2^(n-1)-1)*Bernoulli(n)/n! | for n>0.
2
2, 3, 45, 945, 4725, 13365, 638512875, 18243225, 23260111875, 38979295480125, 1531329465290625, 274446060013125, 201919571963756521875, 11094481976030578125, 80664808595725181953125, 5660878804669082674070015625, 31245110285511170603633203125, 75344438393998438430390625
OFFSET
0,1
REFERENCES
F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; p. 12, Eq. 11.
FORMULA
a(n) = denominator(Zeta(2*n)*(4^n-2)/Pi^(2*n)). - Peter Luschny, Aug 11 2014
EXAMPLE
1/2, 1/3, 7/45, 62/945, 127/4725, 146/13365, 2828954/638512875, 32764/18243225, 16931177/23260111875, 11499383114/38979295480125, ...
MAPLE
A171079 := n -> denom(Zeta(2*n)*(4^n-2)/Pi^(2*n));
seq(A171079(n), n=0..17); # Peter Luschny, Aug 11 2014
CROSSREFS
Cf. A171078 (numerators).
Sequence in context: A060415 A289661 A191996 * A097929 A266512 A041501
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Sep 06 2010
EXTENSIONS
a(0) changed in accordance with the zeta based formula. Peter Luschny, Aug 18 2014
STATUS
approved