login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171005 a(n) = (n+1)*(n-1)!/2. 2
4, 15, 72, 420, 2880, 22680, 201600, 1995840, 21772800, 259459200, 3353011200, 46702656000, 697426329600, 11115232128000, 188305108992000, 3379030566912000, 64023737057280000, 1277273554292736000, 26761922089943040000, 587545834974658560000, 13488008733331292160000 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,1
COMMENTS
A wheel graph is a graph with n+1 vertices (n>=3) formed by connecting a single vertex to all vertices of an n-cycle. a(n) is the number of labeled wheel graphs. - Geoffrey Critzer, Feb 02 2014
LINKS
FORMULA
a(n) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*(j+1)^(n+1)/(n+1). - Vladimir Kruchinin, Jun 01 2013
D-finite with recurrence -n*a(n) +(n-1)*(n+1)*a(n-1) = 0. - R. J. Mathar, Feb 01 2022
EXAMPLE
For n >= 1, the sequence is 1, 3/2, 4, 15, 72, 420, 2880, 22680, 201600, 1995840, ...
MATHEMATICA
Table[((n+1)*(n-1)!)/2, {n, 3, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2011 *)
nn=20; Drop[Range[0, nn]!CoefficientList[Series[x (Log[1/(1-x)]/2+x^2/4+x/2), {x, 0, nn}], x], 4] (* Geoffrey Critzer, Feb 02 2014 *)
CROSSREFS
Equals A001048/2.
Sequence in context: A278640 A026992 A039764 * A303229 A340355 A356009
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 02 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 18:17 EDT 2024. Contains 371962 sequences. (Running on oeis4.)