login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170838
G.f.: Product_{k>=0} (1 + x^(2^k-1) + 3x^(2^k)).
2
2, 5, 9, 11, 11, 24, 36, 29, 11, 24, 38, 44, 57, 108, 135, 83, 11, 24, 38, 44, 57, 108, 137, 98, 57, 110, 158, 189, 279, 459, 486, 245, 11, 24, 38, 44, 57, 108, 137, 98, 57, 110, 158, 189, 279, 459, 488, 260, 57, 110, 158, 189, 279, 461, 509, 351, 281, 488, 663, 846, 1296
OFFSET
0,1
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
MAPLE
Maple program for A170838-A170852, A162956, A170854-A170872.
read format;
G := proc(a, b, c); mul( 1 + a*x^(2^n-1) + b*x^(2^n), n=c..20); end;
f := proc(a, b, c) seriestolist(series(G(a, b, c), x, 120)); end;
at:=170838:
for a from 1 to 2 do for c from 0 to 2 do
b:=3;
t1:=f(a, b, c);
lprint( format(t1, at) );
lprint("G.f.: Prod_{k >= ", c, "} (1 +", a, "* x^(2^k-1) +", b, "* x^(2^k)).");
at:=at+1; od: od:
for b from 1 to 3 do for c from 0 to 2 do
a:=3;
t1:=f(a, b, c);
lprint( format(t1, at) );
lprint("G.f.: Prod_{k >= ", c, "} (1 +", a, "* x^(2^k-1) +", b, "* x^(2^k)).");
at:=at+1; od: od:
h:=proc(r, s, a, b) local s1, n, i, j;
s1:=array(0..120);
s1[0]:=r; s1[1]:=s;
for n from 2 to 120 do i:=floor(log(n)/log(2));
j:=n-2^i; s1[n]:=a*s1[j]+b*s1[j+1]; od:
[seq(s1[n], n=0..120)];
end;
l1:=[[0, 1], [1, 0], [1, 1], [1, 2]];
l2:=[[3, 1], [3, 2], [1, 3], [2, 3], [3, 3]];
for i from 1 to 4 do for j from 1 to 5 do
r:=l1[i][1];
s:=l1[i][2];
a:=l2[j][1];
b:=l2[j][2];
t1:=h(r, s, a, b);
lprint(format(t1, at)); at:=at+1;
lprint("a(0)=", r, ", a(1)=", s, "; a(2^i+j)=", a, "*a(j)+", b, "a(j+1) for 0 <= j < 2^i.");
od: od:
MATHEMATICA
With[{nn=60}, CoefficientList[Series[Product[1+x^(2^k-1)+3x^2^k, {k, 0, nn}], {x, 0, nn}], x]] (* Harvey P. Dale, Dec 29 2021 *)
CROSSREFS
A170838-A170852, A170854-A170872 were added to supplement Gary W. Adamson's A162956.
Sequence in context: A159073 A088343 A110781 * A115248 A005123 A332821
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 02 2010
STATUS
approved