login
A170507
Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^46 = I.
0
1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, -136).
FORMULA
G.f. (t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 +
2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^46 - 16*t^45 -
16*t^44 - 16*t^43 - 16*t^42 - 16*t^41 - 16*t^40 - 16*t^39 - 16*t^38 -
16*t^37 - 16*t^36 - 16*t^35 - 16*t^34 - 16*t^33 - 16*t^32 - 16*t^31 -
16*t^30 - 16*t^29 - 16*t^28 - 16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 -
16*t^23 - 16*t^22 - 16*t^21 - 16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 -
16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 -
16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 -
16*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[45]]+t^46+1, den=Total[-16 t^Range[45]]+136t^46+ 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Aug 23 2013 *)
CROSSREFS
Sequence in context: A170363 A170411 A170459 * A170555 A170603 A170651
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved