login
A170390
Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.
0
1, 45, 1980, 87120, 3833280, 168664320, 7421230080, 326534123520, 14367501434880, 632170063134720, 27815482777927680, 1223881242228817920, 53850774658067988480, 2369434084954991493120, 104255099738019625697280
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170764, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, -946).
FORMULA
G.f. (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 +
2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(946*t^43 - 43*t^42 - 43*t^41 - 43*t^40 - 43*t^39 -
43*t^38 - 43*t^37 - 43*t^36 - 43*t^35 - 43*t^34 - 43*t^33 - 43*t^32 -
43*t^31 - 43*t^30 - 43*t^29 - 43*t^28 - 43*t^27 - 43*t^26 - 43*t^25 -
43*t^24 - 43*t^23 - 43*t^22 - 43*t^21 - 43*t^20 - 43*t^19 - 43*t^18 -
43*t^17 - 43*t^16 - 43*t^15 - 43*t^14 - 43*t^13 - 43*t^12 - 43*t^11 -
43*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 -
43*t^2 - 43*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[42]]+t^43+1, den=Total[-43 t^Range[42]]+946t^43+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Mar 19 2013 *)
CROSSREFS
Sequence in context: A170246 A170294 A170342 * A170438 A170486 A170534
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved