login
A170241
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^40 = I.
0
1, 40, 1560, 60840, 2372760, 92537640, 3608967960, 140749750440, 5489240267160, 214080370419240, 8349134446350360, 325616243407664040, 12699033492898897560, 495262306223057004840, 19315229942699223188760
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170759, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, -741).
FORMULA
G.f. (t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(741*t^40 - 38*t^39 - 38*t^38 - 38*t^37 - 38*t^36 - 38*t^35 - 38*t^34
- 38*t^33 - 38*t^32 - 38*t^31 - 38*t^30 - 38*t^29 - 38*t^28 - 38*t^27 -
38*t^26 - 38*t^25 - 38*t^24 - 38*t^23 - 38*t^22 - 38*t^21 - 38*t^20 -
38*t^19 - 38*t^18 - 38*t^17 - 38*t^16 - 38*t^15 - 38*t^14 - 38*t^13 -
38*t^12 - 38*t^11 - 38*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5
- 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[39]]+t^40+1, den=Total[-38 t^Range[39]]+741t^40+ 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Jun 10 2013 *)
CROSSREFS
Sequence in context: A170097 A170145 A170193 * A170289 A170337 A170385
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved