login
A170170
Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^39 = I.
0
1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, -120).
FORMULA
G.f. (t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^39 -
15*t^38 - 15*t^37 - 15*t^36 - 15*t^35 - 15*t^34 - 15*t^33 - 15*t^32 -
15*t^31 - 15*t^30 - 15*t^29 - 15*t^28 - 15*t^27 - 15*t^26 - 15*t^25 -
15*t^24 - 15*t^23 - 15*t^22 - 15*t^21 - 15*t^20 - 15*t^19 - 15*t^18 -
15*t^17 - 15*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 -
15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 -
15*t^2 - 15*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[38]]+t^39+1, den=Total[-15 t^Range[38]]+ 120t^39+ 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Oct 19 2012 *)
CROSSREFS
Sequence in context: A170026 A170074 A170122 * A170218 A170266 A170314
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved