login
A170035
Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.
0
1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, -300).
FORMULA
G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^36 - 24*t^35 - 24*t^34 - 24*t^33 -
24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 -
24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 -
24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 -
24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4
- 24*t^3 - 24*t^2 - 24*t + 1)
CROSSREFS
Sequence in context: A169471 A169519 A169567 * A170083 A170131 A170179
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved