login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169980
Numerator(Bernoulli(2n)) mod denominator(Bernoulli(2n)).
4
0, 1, 29, 1, 29, 5, 2039, 1, 463, 775, 289, 17, 2039, 1, 811, 12899, 463, 1, 1280537, 1, 11519, 1, 637, 41, 31933, 5, 1507, 775, 811, 53, 34488049, 1, 463, 62483, 29, 289, 91560011, 1, 29, 37, 182293, 77, 2346073, 1, 56003, 230759, 1333, 1, 3051091, 1, 28859, 61, 1507
OFFSET
0,3
COMMENTS
From Robert G. Wilson v, Aug 27 2010: (Start)
From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Values sorted: 1, 5, 17, 29, 37, 41, 49, 53, 61, 65, 77, 101, 137, 161, 169, 173, 181, 185, 221, 229, ..., .
a(n)== 1 for n's: 1, 3, 7, 13, 17, 19, 21, 31, 37, 43, 47, 49, 57, 59, 61, 67, 71, 73, 79, 91, 93, 97, ..., .
a(n)== 5 for n's: 5, 25, 85, 185, 235, 295, 305, 335, 355, 365, 395, 425, 505, 535, 635, 685, 695, ..., . A051229
a(n)==17 for n's: 11, 77, 87, 121, 143, 187, 407, 517, 539, 649, 671, 737, 781, 847, 869, 1067, 1111, ..., .
a(n)==29 for n's: 2, 4, 34, 38, 62, 76, 94, 118, 122, 124, 142, 188, 202, 206, 214, 218, 236, 244, ..., . A051225
a(n)==37 for n's: 39, 507, 1209, 1677, 3783, 4251, 5421, 5811, 6123, 6357, 6513, 7526, 7682, 7760, 8228, ..., .
a(n)==41 for n's: 23, 123, 161, 391, 437, 529, 851, 1081, 1127, 1357, 1403, 1633, 1817, 2323, 2369, 2461, ..., .
a(n)==49 for n's: 55, 275, 605, 2035, 3025, 3355, 3685, 3905, 4345, 5555, 5885, 6985, 7535, 7645, 8195, ..., .
a(n)==53 for n's: 29, 203, 377, 493, 841, 899, 1073, 1247, 1363, 1711, 1943, 2059, 2117, 2813, 2929, 2987, ..., .
a(n)==61 for n's: 51, 867, 2193, 3009, 3417, 6477, 7089, 8007, 8313, 8517, 10047, 10149, 11577, 11679, ..., .
a(n)==65 for n's: 159, 6837, 8427, 9381, 11289, 12561, 15423, 17331, 23691, 25917, 26553, 30687, 31323, ..., .
a(n)==77 for n's: 41, 287, 533, 697, 1517, 1681, 1927, 2419, 2747, 2911, 3239, 3731, 3977, 4141, 4387, ..., .
(End)
FORMULA
A000367(n) mod A002445(n). [Robert G. Wilson v, Aug 27 2010]
MATHEMATICA
f[n_] := Block[{b = BernoulliB[2 n]}, Mod[Numerator@b, Denominator@b]]; Array[f, 53, 0] (* Robert G. Wilson v, Aug 27 2010 *)
PROG
(PARI) a(n) = my(b = bernfrac(2*n)); numerator(b) % denominator(b); \\ Michel Marcus, Mar 15 2015
CROSSREFS
Sequence in context: A040866 A040867 A040868 * A040869 A111881 A040833
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 19 2010
STATUS
approved