login
A169642
a(n) = A005408(n) * A022998(n).
2
0, 3, 20, 21, 72, 55, 156, 105, 272, 171, 420, 253, 600, 351, 812, 465, 1056, 595, 1332, 741, 1640, 903, 1980, 1081, 2352, 1275, 2756, 1485, 3192, 1711, 3660, 1953, 4160, 2211, 4692, 2485, 5256, 2775, 5852, 3081, 6480, 3403, 7140, 3741, 7832, 4095, 8556
OFFSET
0,2
FORMULA
From R. J. Mathar, Oct 09 2010: (Start)
a(n)= +3*a(n-2) -3*a(n-4) +a(n-6).
G.f.: -x*(3+20*x+12*x^2+12*x^3+x^4)/ ( (x-1)^3*(1+x)^3 ). (End)
From Colin Barker, Dec 29 2016: (Start)
a(n) = 4*n^2 + 2*n for n>0 and even.
a(n) = 2*n^2 + n for n odd. (End)
Sum_{n>=1} 1/a(n) = 1 + Pi/8 - 5*log(2)/4. - Amiram Eldar, Aug 12 2022
MATHEMATICA
LinearRecurrence[{0, 3, 0, -3 , 0, 1}, {0 , 3, 20, 21, 72, 55}, 47] (* Georg Fischer, Feb 22 2019 *)
PROG
(PARI) concat(0, Vec(-x*(3+20*x+12*x^2+12*x^3+x^4)/ ((x-1)^3*(1+x)^3) + O(x^50))) \\ Colin Barker, Dec 29 2016
CROSSREFS
Sequence in context: A081849 A333667 A375618 * A222482 A022129 A308721
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Apr 04 2010
EXTENSIONS
Edited by N. J. A. Sloane, Apr 05 2010
More terms from R. J. Mathar, Oct 09 2010
STATUS
approved