OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
FORMULA
From R. J. Mathar, Oct 09 2010: (Start)
a(n)= +3*a(n-2) -3*a(n-4) +a(n-6).
G.f.: -x*(3+20*x+12*x^2+12*x^3+x^4)/ ( (x-1)^3*(1+x)^3 ). (End)
From Colin Barker, Dec 29 2016: (Start)
a(n) = 4*n^2 + 2*n for n>0 and even.
a(n) = 2*n^2 + n for n odd. (End)
Sum_{n>=1} 1/a(n) = 1 + Pi/8 - 5*log(2)/4. - Amiram Eldar, Aug 12 2022
MATHEMATICA
LinearRecurrence[{0, 3, 0, -3 , 0, 1}, {0 , 3, 20, 21, 72, 55}, 47] (* Georg Fischer, Feb 22 2019 *)
PROG
(PARI) concat(0, Vec(-x*(3+20*x+12*x^2+12*x^3+x^4)/ ((x-1)^3*(1+x)^3) + O(x^50))) \\ Colin Barker, Dec 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Apr 04 2010
EXTENSIONS
Edited by N. J. A. Sloane, Apr 05 2010
More terms from R. J. Mathar, Oct 09 2010
STATUS
approved