login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A169630 a(n) = n times the square of Fibonacci(n). 3
0, 1, 2, 12, 36, 125, 384, 1183, 3528, 10404, 30250, 87131, 248832, 705757, 1989806, 5581500, 15586704, 43356953, 120187008, 332134459, 915304500, 2516113236, 6900949462, 18888143927, 51599794176, 140718765625, 383142771674 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

G. Baron, H. Prodinger, R. F. Tichy, F. T. Boesch, J. F. Wang, The number of spanning trees in the square of a cycle, Fibonacci Quart. 23 (1985), no. 3, 258-264 [MR0806296]

R. Guy, Q on papers by Kleitman, Baron et al., SeqFan list, Mar 2010

D. J. Kleitman, B. Golden, Counting trees in a certain class of graphs, Amer. Math. Monthly 82 (1975), 40-44.

Index entries for linear recurrences with constant coefficients, signature (4,0,-10,0,4,-1)

FORMULA

a(n) = A045925(n)*A000045(n) = n*A007598(n) = n *(A000045(n))^2.

a(n) = 4*a(n-1) -10*a(n-3) +4*a(n-5) -a(n-6).

G.f.: x*(1-2*x+4*x^2-2*x^3+x^4)/ ((1+x)^2 * (x^2-3*x+1)^2).

MAPLE

A169630 := proc(n) n*(combinat[fibonacci](n))^2 ; end proc:

MATHEMATICA

CoefficientList[Series[x*(1 - 2*x + 4*x^2 - 2*x^3 + x^4)/((1 + x)^2*(x^2 - 3*x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)

PROG

(MAGMA) I:=[0, 1, 2, 12, 36, 125]; [n le 6 select I[n] else 4*Self(n-1)-10*Self(n-3)+4*Self(n-5)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012

(Haskell)

a169630 n = a007598 n * n  -- Reinhard Zumkeller, Sep 01 2013

(PARI) vector(40, n, n--; n*fibonacci(n)^2) \\ Michel Marcus, Jul 09 2015

CROSSREFS

Sequence in context: A073404 A141208 A181825 * A192385 A185788 A035597

Adjacent sequences:  A169627 A169628 A169629 * A169631 A169632 A169633

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Mar 13 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 08:53 EST 2016. Contains 278775 sequences.