login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169592
Expansion of 1/((1-x)*(1-x^2-x^4)) + x/(1-3*x^3).
1
1, 2, 2, 2, 7, 4, 7, 16, 12, 12, 47, 20, 33, 114, 54, 54, 331, 88, 143, 872, 232, 232, 2563, 376, 609, 7170, 986, 986, 21279, 1596, 2583, 61632, 4180, 4180, 183911, 6764, 10945, 542386, 17710, 17710, 1622979, 28656, 46367, 4829336, 75024, 75024, 14470299, 121392
OFFSET
0,2
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 303.
FORMULA
G.f.: (1+x+x^4-x^5+x^6-x^2-4*x^3)/((1-x)*(1-3*x^3)*(1-x^2-x^4)).
a(n) = +a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5) +3*a(n-6) -3*a(n-7) 3*a(n-8).
a(n) = A103609(n+6) - 1 + 3^((n-1)/3) if n == 1 mod 3.
a(n) = A103609(n+6) - 1 if n == 0 or 2 mod 3.
MATHEMATICA
p[t_]= 1/((1-t)*(1-t^2-t^4)) + t/(1-3*t^3);
CoefficientList[ Series[p[t], {t, 0, 60}], t]
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 60);
Coefficients(R!( 1/((1-x)*(1-x^2-x^4)) +x/(1-3*x^3) )); // G. C. Greubel, Oct 23 2024
(SageMath)
def A169592_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x)*(1-x^2-x^4)) +x/(1-3*x^3) ).list()
A169592_list(60) # G. C. Greubel, Oct 23 2024
CROSSREFS
Cf. A103609.
Sequence in context: A029610 A279967 A094246 * A245600 A266689 A265988
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 02 2009
EXTENSIONS
Notation adapted to OEIS standards, sequence extended, formulas added by the Assoc. Editors of the OEIS [Dec 05 2009]
STATUS
approved