login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of 2-noncrossing permutations of n elements.
0

%I #12 Oct 10 2024 05:10:56

%S 1,10,76,543,3904,29034,225753

%N The number of 2-noncrossing permutations of n elements.

%C 2nd column of table on p.4 of Burrill, Mishna, and Post. Table 2. Column 1 is the Catalan numbers A000108. The number of permutations of S_n with crossing number k. A crossing number of 1 is equivalent to non-crossing.

%H Sophie Burrill, Marni Mishna and Jacob Post, <a href="http://arxiv.org/abs/0912.0239">On k-crossings and k-nestings of permutations</a>, arXiv:0912.0239 [math.CO], 2009.

%H William Y. C. Chen, Eva Y. P. Deng, Rosena R. X. Du, Richard P. Stanley, and Catherine H. Yan, <a href="https://doi.org/10.1090/S0002-9947-06-04210-3">Crossings and nestings of matchings and partitions</a>, Trans. Amer. Math. Soc., 359(4):1555-1575 (electronic), 2007.

%H Sylvie Corteel, <a href="https://doi.org/10.1016/j.aam.2006.01.006">Crossings and alignments of permutations</a>, Adv. Appl. Math 38 (2007) 149-163.

%H Anna de Mier, <a href="https://arxiv.org/abs/math/0602195">k-Noncrossing and k-nonnesting graphs and fillings of Ferrers diagrams</a>, arXiv:math/0602195 [math.CO], 2006.

%H Anna de Mier, <a href="https://doi.org/10.1007/s00493-007-2297-2">k-noncrossing and k-nonnesting graphs and fillings of Ferrers diagrams</a>, Combinatorica, 27(6), 699-720, 2007.

%Y Cf. A000108.

%K nonn,more

%O 3,2

%A _Jonathan Vos Post_, Dec 02 2009