login
A169434
Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
0
1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170756, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 666. - Klaus Brockhaus, Jun 30 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, -630).
FORMULA
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^32 - 35*t^31 - 35*t^30 - 35*t^29 - 35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 - 35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).
G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-35*sum(k=1..31,x^k)+630*x^32).
MATHEMATICA
With[{num=Total[2t^Range[31]]+t^32+1, den=Total[-35 t^Range[31]]+ 630t^32+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Oct 03 2012 *)
CROSSREFS
Cf. A170756 (G.f.: (1+x)/(1-36*x) ).
Sequence in context: A169290 A169338 A169386 * A169482 A169530 A169578
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved