login
A169433
Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
0
1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170755, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 630. - Klaus Brockhaus, Jun 30 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, -595).
FORMULA
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^32 - 34*t^31 - 34*t^30 - 34*t^29 - 34*t^28 - 34*t^27 - 34*t^26 - 34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 - 34*t^21 - 34*t^20 - 34*t^19 - 34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1).
G.f.: (1+2*sum(k=1..31,x^k)+x^32)/(1-34*sum(k=1..31,x^k)+595*x^32).
MATHEMATICA
With[{num=Total[2t^Range[31]]+t^32+1, den=Total[-34 t^Range[31]]+ 595t^32+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Nov 11 2011 *)
CROSSREFS
Cf. A170755 (G.f.: (1+x)/(1-35*x) ).
Sequence in context: A169289 A169337 A169385 * A169481 A169529 A169577
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved