login
A169419
Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
0
1, 22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024782, 366957381520422, 7706105011928862, 161828205250506102, 3398392310260628142, 71366238515473190982
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170741, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 231. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, -210).
FORMULA
G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^32 - 20*t^31 - 20*t^30 - 20*t^29 - 20*t^28 - 20*t^27 - 20*t^26 - 20*t^25 - 20*t^24 - 20*t^23 - 20*t^22 - 20*t^21 - 20*t^20 - 20*t^19 - 20*t^18 - 20*t^17 - 20*t^16 - 20*t^15 - 20*t^14 - 20*t^13 - 20*t^12 - 20*t^11 - 20*t^10 - 20*t^9 - 20*t^8 - 20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-20*sum(k=1..31, x^k)+210*x^32).
MATHEMATICA
coxG[{32, 210, -20}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 16 2018 *)
CROSSREFS
Cf. A170741 (G.f.: (1+x)/(1-21*x) ).
Sequence in context: A169275 A169323 A169371 * A169467 A169515 A169563
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved