login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169334
Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
0
1, 33, 1056, 33792, 1081344, 34603008, 1107296256, 35433480192, 1133871366144, 36283883716608, 1161084278931456, 37154696925806592, 1188950301625810944, 38046409652025950208, 1217485108864830406656, 38959523483674573012992
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170752, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 1471849183103021127341357405994791859394706928, A170752(30) = 1471849183103021127341357405994791859394707456. - Klaus Brockhaus, Jun 23 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, -496).
FORMULA
G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^30 - 31*t^29 - 31*t^28 - 31*t^27 - 31*t^26 - 31*t^25 - 31*t^24 - 31*t^23 - 31*t^22 - 31*t^21 - 31*t^20 - 31*t^19 - 31*t^18 - 31*t^17 - 31*t^16 - 31*t^15 - 31*t^14 - 31*t^13 - 31*t^12 - 31*t^11 - 31*t^10 - 31*t^9 - 31*t^8 - 31*t^7 - 31*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[29]]+t^30+1, den=Total[-31 t^Range[29]]+ 496t^30+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Feb 27 2013 *)
CROSSREFS
Cf. A170752 (G.f.: (1+x)/(1-32*x)).
Sequence in context: A169190 A169238 A169286 * A169382 A169430 A169478
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved