login
A169329
Number of reduced words of length n in Coxeter group on 28 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
0
1, 28, 756, 20412, 551124, 14880348, 401769396, 10847773692, 292889889684, 7908027021468, 213516729579636, 5764951698650172, 155653695863554644, 4202649788315975388, 113471544284531335476, 3063731695682346057852
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170747, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 9051221478016886960183671460198087611894458, A170747(30) = 9051221478016886960183671460198087611894836. - Klaus Brockhaus, Jun 23 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, -351).
FORMULA
G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(351*t^30 - 26*t^29 - 26*t^28 - 26*t^27 - 26*t^26 - 26*t^25 - 26*t^24 - 26*t^23 - 26*t^22 - 26*t^21 - 26*t^20 - 26*t^19 - 26*t^18 - 26*t^17 - 26*t^16 - 26*t^15 - 26*t^14 - 26*t^13 - 26*t^12 - 26*t^11 - 26*t^10 - 26*t^9 - 26*t^8 - 26*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 - 26*t^2 - 26*t + 1).
MATHEMATICA
coxG[{30, 351, -26}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 04 2018 *)
CROSSREFS
Cf. A170747 (G.f.: (1+x)/(1-27*x)).
Sequence in context: A169185 A169233 A169281 * A169377 A169425 A169473
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved