login
A169294
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.
0
1, 41, 1640, 65600, 2624000, 104960000, 4198400000, 167936000000, 6717440000000, 268697600000000, 10747904000000000, 429916160000000000, 17196646400000000000, 687865856000000000000, 27514634240000000000000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170760, although the two sequences are eventually different.
First disagreement at index 29: a(29) = 29543613555550453759999999999999999999999999180, A170760(29) = 29543613555550453760000000000000000000000000000. - Klaus Brockhaus, Jun 03 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, -780).
FORMULA
G.f.: (t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^29 - 39*t^28 - 39*t^27 - 39*t^26 - 39*t^25 - 39*t^24 - 39*t^23 - 39*t^22 - 39*t^21 - 39*t^20 - 39*t^19 - 39*t^18 - 39*t^17 - 39*t^16 - 39*t^15 - 39*t^14 - 39*t^13 - 39*t^12 - 39*t^11 - 39*t^10 - 39*t^9 - 39*t^8 - 39*t^7 - 39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1).
MATHEMATICA
coxG[{29, 780, -39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 15 2015 *)
CROSSREFS
Cf. A170760 (G.f.: (1+x)/(1-40*x)).
Sequence in context: A169150 A169198 A169246 * A169342 A169390 A169438
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved