login
A169220
Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
0
1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170734, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 132296459669194216956674766274455, A170734(28) = 132296459669194216956674766274560. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, -91).
FORMULA
G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^28 - 13*t^27 - 13*t^26 - 13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
MATHEMATICA
coxG[{28, 91, -13}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 01 2020 *)
CROSSREFS
Cf. A170734 (G.f.: (1+x)/(1-14*x)).
Sequence in context: A169076 A169124 A169172 * A169268 A169316 A169364
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved