login
A169082
Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
0
1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300800000000000, 86016000000000000, 1720320000000000000, 34406400000000000000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170740, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 352321535999999999999999999999790, A170740(25) = 352321536000000000000000000000000. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, -190).
FORMULA
G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(190*t^25 - 19*t^24 - 19*t^23 - 19*t^22 - 19*t^21 - 19*t^20 - 19*t^19 - 19*t^18 - 19*t^17 - 19*t^16 - 19*t^15 - 19*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[0, 25]]-1-t^25, den=Total[-19 t^Range[24]] +190t^25+1}, CoefficientList[Series[num/den, {t, 0, 40}], t]] (* Harvey P. Dale, Jun 14 2011 *)
CROSSREFS
Cf. A170740 (G.f.: (1+x)/(1-20*x)).
Sequence in context: A168938 A168986 A169034 * A169130 A169178 A169226
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved