login
A169047
Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.
0
1, 34, 1122, 37026, 1221858, 40321314, 1330603362, 43909910946, 1449027061218, 47817893020194, 1577990469666402, 52073685498991266, 1718431621466711778, 56708243508401488674, 1871372035777249126242, 61755277180649221165986
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170753, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 2866154083607985366351116978555570097, A170753(24) = 2866154083607985366351116978555570658. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -528).
FORMULA
G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^24 - 32*t^23 - 32*t^22 - 32*t^21 - 32*t^20 - 32*t^19 - 32*t^18 - 32*t^17 - 32*t^16 - 32*t^15 - 32*t^14 - 32*t^13 - 32*t^12 - 32*t^11 - 32*t^10 - 32*t^9 - 32*t^8 - 32*t^7 - 32*t^6 - 32*t^5 - 32*t^4 - 32*t^3 - 32*t^2 - 32*t + 1).
MATHEMATICA
coxG[{24, 528, -32}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 24 2020 *)
CROSSREFS
Cf. A170753 (G.f.: (1+x)/(1-33*x)).
Sequence in context: A168903 A168951 A168999 * A169095 A169143 A169191
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved