login
A168954
Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.
0
1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170756, although the two sequences are eventually different.
First disagreement at index 22: a(22) = 17805502725739853778361342840798566, A170756(22) = 17805502725739853778361342840799232. - Klaus Brockhaus, Apr 10 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, -630).
FORMULA
G.f.: (t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^22 - 35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1).
MATHEMATICA
coxG[{22, 630, -35}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 13 2019 *)
CROSSREFS
Cf. A170756 (G.f.: (1+x)/(1-36*x)).
Sequence in context: A168810 A168858 A168906 * A169002 A169050 A169098
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved