login
A168865
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.
0
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170763, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 477917939121058331055964966178962, A170763(20) = 477917939121058331055964966179908. - Klaus Brockhaus, Apr 04 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
FORMULA
G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^20 - 42*t^19 - 42*t^18 - 42*t^17 - 42*t^16 - 42*t^15 - 42*t^14 - 42*t^13 - 42*t^12 - 42*t^11 - 42*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[19]]+t^20+1, den=Total[-42 t^Range[19]]+903t^20+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Jul 17 2014 *)
CROSSREFS
Cf. A170763 (G.f.: (1+x)/(1-43*x)).
Sequence in context: A168721 A168769 A168817 * A168913 A168961 A169009
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved