login
A168723
Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
1
1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170765, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 13006428327512311706542967715, A170765(17) = 13006428327512311706542968750. - Klaus Brockhaus, Mar 28 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, -990).
FORMULA
G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).
MATHEMATICA
CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 06 2016 *)
CROSSREFS
Cf. A170765 (G.f.: (1+x)/(1-45*x)).
Sequence in context: A167643 A167861 A167962 * A168771 A168819 A168867
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved