OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
FORMULA
From Harvey P. Dale, Mar 09 2016: (Start)
a(0)=0, a(1)=1, a(2)=320, a(3)=10935, a(4)=139264, a(5)=1015625, a(6)=5178816, a(7)=20588575, a(8)=68157440, a(9)=196101729, a(n)= 10*a(n-1)- 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10).
G.f.: x*(1 + 310*x + 7780*x^2 + 44194*x^3 + 76870*x^4 + 44194*x^5 + 7780*x^6 + 310*x^7 + x^8)/(1 - x)^10. (End)
E.g.f.: (1/2)*x*(2 + 318*x + 3326*x^2 + 8120*x^3 + 7091*x^4 + 2667*x^5 + 463*x^6 + 36*x^7 + x^8)*exp(x). - G. C. Greubel, Jul 28 2016
MATHEMATICA
Table[n^7 (n^2+1)/2, {n, 0, 20}] (* or *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 320, 10935, 139264, 1015625, 5178816, 20588575, 68157440, 196101729}, 21] (* Harvey P. Dale, Mar 09 2016 *)
PROG
(Magma) [n^7*(n^2+1)/2: n in [0..25]]; // Vincenzo Librandi, Jul 29 2016
(PARI) a(n)=n^7*(n^2+1)/2 \\ Charles R Greathouse IV, Jul 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved